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Autonomous systems face challenges in transmitting high-quality 

images over bandwidth-constrained networks like LoRa, which 

operates at data rates of 0.3–50 kbps. This study proposes the 

Residual Dense Feature Network (RDF Net), a super-resolution 

model designed to optimize image transmission within the 

constraints of LoRa networks. By leveraging Contrast-Aware 

Channel Attention (CCA), Enhanced Spatial Attention (ESA), 

Blueprint Separable Convolution (BSConv), and a progressive 

approach, RDF Net achieves 20x upscaling, enabling low-resolution 

images (40x40 pixels) to be reconstructed into high-resolution 

outputs (800x800 pixels) on a central server. Experimental 

evaluations demonstrate that Model-4, combining CCA and ESA, 

delivers state-of-the-art perceptual quality and structural fidelity, 

while Model-3, using ESA, offers a computationally efficient 

alternative for resource-constrained scenarios. Simulations of 

LoRa’s bandwidth limitations reveal that transmitting a single 40x40 

image requires approximately 0.208–0.56 seconds at a data rate of 

50 kbps. While this demonstrates the feasibility of near real-time 

communication, the trade-off between latency and visual fidelity 

remains a critical consideration, particularly for latency-sensitive 

applications. These findings underscore RDF Net’s potential to 

address the challenges of high-quality visual communication in 

bandwidth-constrained environments, paving the way for enhanced 

autonomous system applications. Further optimization, including 

adaptive compression strategies, and testing on actual LoRa 

hardware are recommended to validate its performance in real-

world scenarios and explore its applicability to diverse autonomous 

systems. 
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INTRODUCTION 

Autonomous systems in industrial, campus, and 

logistics environments often operate under constrained 

energy conditions, requiring communication systems 

that are simple and energy efficient. LoRa (Long 

Range) is a widely used communication technology in 

such scenarios due to its low power consumption and 

long-range capabilities. However, LoRa is limited by a 

narrow bandwidth range of 0.3–50 kbps data rates, 

making it challenging to transmit large datasets, such 

as images (Dede et al., 2024; Murray et al., 2021; Pham 

et al., 2023). 

This limitation leads to longer transmission 

times or reduced image quality, which is problematic 

for autonomous systems that rely on high-quality 

visual data. To address this, efficient image 

transmission methods are essential. This study 

proposes capturing low-resolution images (40x40 

https://doi.org/10.31294/paradigma.v27i
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pixels) that fit within LoRa’s bandwidth constraints 

and using advanced super-resolution techniques to 

upscale them to 800x800 pixels on a central server, 

ensuring both transmission efficiency and image 

quality. 

Previous SR models, such as Generative 

Adversarial Networks (GANs) (Park & Lee, 2021; 

Shang et al., 2020), and Attention based Back-

Projection Networks (Qin et al., 2024, p. 3) have 

primarily focused on upscaling by factors of 16x. 

However, these methods are not optimized for the 

specific challenges of autonomous system imagery and 

bandwidth limitations. Non-GAN approaches, such as 

those leveraging residual architectures, offer a more 

computationally efficient alternative, but they have not 

been widely explored for extreme upscaling tasks, 

particularly in bandwidth-constrained autonomous 

systems. 

This study introduces the Residual Dense 

Feature Network (RDF Net), an innovative architecture 

designed for 20x upscaling that incorporates advanced 

attention mechanisms, such as Contrast-Aware 

Channel Attention (CCA) and Enhanced Spatial 

Attention (ESA). RDF Net addresses the unique 

challenges of autonomous systems by improving 

feature extraction and image reconstruction while 

maintaining computational efficiency. Unlike prior 

approaches, RDF Net’s architecture is specifically 

optimized for low-resolution image inputs under 

stringent bandwidth constraints. 

The core contribution of this research lies in 

its integration of both CCA and ESA mechanisms, 

which enhance image quality by refining critical 

features at both the channel and spatial levels. RDF Net 

builds upon the Residual Local Feature Network (F. 

Kong et al., 2022) by adopting dense connections that 

enable the network to capture a broader range of 

features essential for high-quality image 

reconstruction. Additionally, RDF Net employs a 

progressive upscaling approach inspired by  

(Chudasama et al., 2022), allowing the model to 

reconstruct images step-by-step for greater precision 

and efficiency. Optimized convolutional layers, 

specifically Blueprint Separable Convolutions 

(BSConv), further enhance computational efficiency 

without sacrificing performance (Z. Li et al., 2022). 

By addressing the challenges of transmitting 

high-quality visual data over bandwidth-constrained 

networks, this study provides a significant step forward 

in enabling reliable and efficient communication for 

autonomous systems. It introduces RDF Net, an SR 

architecture for extreme image super-resolution 

tailored to the bandwidth limitations of LoRa-based 

autonomous systems. By integrating advanced 

attention mechanisms (CCA and ESA) and leveraging 

state-of-the-art design choices such as progressive 

upscaling and BSConv layers, RDF Net achieves a 

balance between computational efficiency and visual 

fidelity. This work demonstrates state-of-the-art 

performance across multiple datasets, underscoring its 

potential for practical applications in low-latency and 

bandwidth-limited scenarios. The findings also 

highlight RDF Net’s novelty compared to existing SR 

models, offering efficient solution for extreme 

upscaling in bandwidth-limited environments. Future 

research will focus on further optimizing RDF Net and 

exploring alternative compression methods to enhance 

real-time performance in broader autonomous system 

environments. 

 

RESEARCH METHOD 

1.  Proposed Model 

This study introduces the Residual Dense 

Feature Network (RDF Net), an advanced architecture 

designed to perform progressive super-resolution (SR), 

aimed at transforming low-resolution (LR) inputs into 

high-resolution (HR) outputs with an impressive 20× 

upscaling factor. As depicted in Figure 1, the RDF Net 

operates in a structured two-branch configuration, 

ensuring high-quality restoration and precise upscaling 

of image details at multiple scales. 

 
Figure 1. Diagram of Proposed RDF Network Model 

The first branch of RDF Net begins by applying a 4× upscaling to the low-resolution input 
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image ILR, generating an intermediate super-resolved 

image ISR1. This initial result is then passed to the 

second branch, where it undergoes an additional 5× 

upscaling, resulting in the final high-resolution output 

ISR2. This progressive upscaling strategy leverages the 

combined strength of several key modules, ensuring 

both computational efficiency and high-quality 

restoration across diverse scales (Chudasama & Upla, 

2020; A. Liu et al., 2022; Y. Wang et al., 2023). 

Each branch is comprised of four essential 

modules: Initial Feature Extraction (IFE), Primary 

Feature Extraction (PFE), Upscaling, and 

Reconstruction. These modules work sequentially, 

processing the image step-by-step to maintain a 

cohesive flow and precise enhancement of the features. 

In the Initial Feature Extraction (IFE) module, 

essential foundational features from the LR image are 

captured using a 7×7 convolutional kernel. This large 

kernel allows the model to gather broad contextual 

information, which is essential for high-resolution 

reconstruction. Additionally, the Gaussian Error Linear 

Unit (GELU) activation function is used to facilitate 

nuanced learning (Liang et al., 2021; Z. Liu et al., 

2021), while Attention Blocks are incorporated to 

refine and emphasize the most important details within 

the image. These components work together to 

establish a strong foundation, producing feature maps 

that retain crucial structural elements of the original 

low-resolution image. 

Building on the IFE, the Primary Feature 

Extraction (PFE) module enhances these foundational 

features by utilizing dense connectivity patterns based 

(Ju et al., 2023; G. Li & Zhu, 2022), and Residual Local 

Feature Blocks (RLFBs) structures, to create Residual 

Dense Feature Block (RDFB). Each RDFB within PFE 

employs Blueprint-separable Convolution (BSConv) 

layers, as illustrated in Figure 2, which shows the 

Diagram of RDFB and BSConv. 

 
Figure 2. Diagram of RDFB and BSConv 

BSConv consist of a combination of 1×1 

pointwise and 3×3 depth-wise convolutions, which 

optimize computational efficiency while maintaining 

high feature extraction accuracy (Bai & Liang, 2024; 

Haase & Amthor, 2020; Z. Li et al., 2022; Zhang et al., 

2022). Attention mechanisms further refine local 

features, and long skip connections address the 

vanishing gradient problem, supporting detailed 

feature propagation. This module ensures that the 

feature map is enriched and ready for the final stages 

of upscaling and reconstruction. 

The next phase involves the Upscaling 

Module, which increases the resolution of the image in 

two distinct phases. In the first phase, the image is 

upscaled by 4× using the Adaptive Weight Multi-Scale 

Reconstruction (AWMS) module. This module 

consists of three parallel convolutional branches with 

kernel sizes of 3×3, 5×5, and 7×7, followed by a Pixel 

Shuffle operation to refine the upscaled image (Z. Li et 

al., 2021). The second phase utilizes the Local Implicit 

Image Function (LIIF), which employs grid sampling 

and feature interpolation to further upscale the image 

by an additional 1.25×, achieving the desired 5× 

upscaling. The combined use of AWMS and LIIF 

ensures that the image quality is preserved while 

achieving precise upscaling, even for non-integer 

scaling factors (Chen et al., 2020). The architecture of 

these modules is clearly depicted in Figure 3, 

showcasing the complementary roles of AWMS and 

LIIF in enhancing the image resolution. 

 

 

 

 

 

 

 

Figure 3. Diagram of AWMS and LIIF Module 

Finally, the Reconstruction Module processes 

the enhanced feature maps from the Upscaling Module 

to produce the SR output. This module employs two 

3×3 convolutional layers to consolidate and refine the 

final image. This final convolution transforms the 

upscaled features into a clear, high-resolution output, 

completing the SR process and ensuring that the output 

image retains sharpness and structural fidelity. 

2.  Model Configurations 

To evaluate the effectiveness of attention 

mechanisms in the RDF Net architecture, we 

experiment with various configurations within the 

Initial Feature Extraction (IFE) module and Residual 

Dense Feature Blocks. Specifically, we integrate 

Contrast-Aware Channel Attention (CCA) and 

Enhanced Spatial Attention (ESA) modules, each 

tailored to enhance different aspects of feature 

extraction.  

The CCA module amplifies critical features 

across channels to increase contrast within feature 

maps using sigmoid activation, while the ESA module 

focuses on spatial attention by processing spatial 

information through convolution, max pooling, and 

upsampling layers. Figure 4 illustrates the structure and 

operational flow of these attention blocks, detailing the 

architecture of each module. 
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Figure 4. Diagram of CCA and ESA Block 

In our experiments, we assess four model variants 

to determine the impact of each attention configuration, 

as outlined in Table 1. 

Table 1. Configuration of each model 

No. 

Model 
Attention type Description 

1 None Baseline Model 

2 CCA Add CCA 

3 ESA Add ESA 

4 CCA+ESA Combine CCA+ESA 

Model 1 serves as the baseline without any 

attention mechanisms in IFE and RDFB, providing a 

control for comparison. Model 2 introduces the CCA 

module, designed to adjust contrast and selectively 

enhance critical channels for improved focus on 

essential information. Model 3 incorporates the ESA 

module, which captures spatial context and fine-

grained spatial details across the image. Finally, Model 

4 combines both CCA and ESA modules, integrating 

spatial and channel attention to enrich feature 

representation comprehensively. This systematic 

evaluation enables us to identify the optimal attention 

configuration for achieving high-resolution detail 

restoration, offering valuable insights for further 

refinement of super-resolution models in bandwidth-

constrained environments. 

3.  Experiment 

The proposed model was implemented using 

PyTorch and tested on a curated dataset, OurDatasets, 

consisting of 593 images. High-resolution (HR) 

patches of size 800×800 pixels were generated via 

random cropping, resulting in three distinct crops per 

image. The dataset was refined using the Laplacian 

activation variance method, filtering out patches with 

variance below 100, leaving 1,500 high-quality 

patches. These were divided into 1,180 images for 

training, 295 for validation, and 25 for testing. 

For performance evaluation, RDF Net was 

tested on the OurDatasets test set (25 images) and 

external datasets, including DIV8K and DIV2K, each 

containing 100 high-resolution images. This provided 

a comprehensive evaluation of the model's 

generalization and reconstruction capabilities (Baghel 

et al., 2023; X. Kong et al., 2021; Zhong Xueliangand 

Luo, 2023). Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index Measure (SSIM) were used 

as performance metrics to assess pixel-level accuracy 

and perceptual quality, respectively. 

To maintain consistency across model 

configurations, each model was trained with three 

residual layers and eight residual blocks. The model 

was trained using Adam optimizer with a learning rate 

of 10^-3, which was halved every 10 epochs. The 

Adam parameters were set to β1 = 0.9, β2 = 0.999, and 

ε = 10^-8 to ensure stable updates. The training 

employed a feature-based loss function, inspired by 

recent work (Andonian et al., 2021; F. Kong et al., 

2022), utilizing a lightweight “Convk3s1-Tanh-

Convk3s1” architecture for feature learning, reducing 

computational load compared to pre-trained models 

like VGG-19. The model was trained for 100 epochs 

with a batch size of 1, given memory constraints. 

Training was carried out on an NVIDIA RTX 3080 Ti 

GPU with 12GB VRAM, ensuring efficient training 

and evaluation. 

The evaluation process incorporated statistical 

methods, particularly comparing the PSNR and SSIM 

values across datasets. The use of these metrics ensured 

an objective measure of the model's performance 

across various high-resolution content types, validating 

both pixel accuracy and visual quality. 

 

RESULTS AND DISCUSSION 

1.  Model Training Performance and Computational 

Efficiency 

The training loss trajectories of the four model 

configurations over 100 epochs provide valuable 

insights into their performance, as illustrated in Figure 

5. Model-1 demonstrates the fastest convergence, 

characterized by a sharp drop in training loss during the 

first 20 epochs and stabilizing at the lowest final 

training loss of 0.01803 by Epoch 100. In contrast, 

Model-4 begins with the highest initial loss but 

converges gradually, stabilizing at 0.01818. This 

gradual convergence suggests better generalization 

capabilities compared to the efficiency of Model-1. 

Models 2 and 3 exhibit intermediate trajectories, with 

Model-3 requiring slightly longer to converge. This 

delay is attributed to its use of Enhanced Spatial 

Attention (ESA), reflected in the less steep slope of its 
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curve during the initial 50 epochs. 

 
Figure 5. Training loss across 100 epochs for all 

model configurations 

Overall, the trends in training loss graph 

reflect the varying convergence behaviors of each 

model. Model-1 emerges as the most efficient in 

training loss reduction, while Model-4 balances slower 

convergence with enhanced generalization 

performance. 

For Validation loss, Figure 6 illustrates the 

validation loss trajectories of the four model 

configurations across 100 epochs. All models exhibit a 

steady reduction in validation loss, with a sharp 

decrease during the initial 20 epochs, followed by a 

more gradual stabilization as training progresses. 

Model-1 achieves the lowest final validation loss of 

0.01796 by Epoch 100, highlighting its superior 

generalization capabilities. 

 
Figure 6. Validation loss across 100 epochs for all 

model configurations 

Models 2 and 3 display slightly slower 

convergence, with final validation losses of 0.01861 

and 0.01878, respectively, reflecting the impact of 

incorporating attention mechanisms. Model-2, which 

includes Contrast-Aware Channel Attention (CCA), 

shows consistent performance across epochs, as 

indicated by its relatively smooth trajectory. In 

comparison, Model-3, which utilizes Enhanced Spatial 

Attention (ESA), demonstrates a slightly more gradual 

decline in loss during the first 50 epochs, suggesting 

the added complexity of spatial feature extraction. 

Model-4 begins with the highest initial 

validation loss of 0.04356, consistent with its training 

loss trend, but it gradually converges to a final loss of 

0.01821 by Epoch 100. This trajectory highlights its 

robust generalization capabilities despite slower initial 

learning dynamics. The differences in loss trajectories 

across the models underscore the trade-off between 

convergence speed and feature extraction complexity. 

Regarding computational efficiency, as 

illustrated in Figures 7, presents the total training 

duration for each model configuration, highlighting the 

trade-off between computational efficiency and model 

complexity. Model-1, which does not incorporate 

attention mechanisms, completes training in the 

shortest time of 7.44 hours, reflecting its simplicity and 

lower computational demand. 

 
Figure 7. Total Training Duration 

Model-2 and Model-3, which include CCA 

and ESA, respectively, require slightly longer 

durations of 8.14 hours and 7.99 hours. The additional 

time for Model-2 suggests that channel-based attention 

mechanisms increase computational load, whereas 

Model-3's use of spatial attention results in only a 

marginal increase in training time. 

Model-4, which combines both CCA and 

ESA, requires the longest training duration of 8.83 

hours. This reflects the added complexity of integrating 

dual attention mechanisms, which enhance feature 

extraction and image restoration performance but at the 

cost of increased computational demands. The results 

indicate that more complex models like Model-4 

prioritize feature richness and generalization over 

computational efficiency, making them suitable for 

high-performance applications where training time is 

less critical. 

2.  Analysis of Model Configuration 

The RDF Net model was tested using 

simulated datasets (Ourdatasets) collected from 

environments where autonomous systems typically 

operate, as well as the widely used DIV2K and DIV8K 

datasets, to evaluate the model's generalizability. While 

these datasets provide a robust basis for benchmarking, 

it is important to note that results may vary when tested 

on real-world data or in real-time applications due to 

factors such as noise, environmental variability, and 

hardware limitations. 

The performance of attention mechanisms in 

enhancing image restoration is demonstrated in Table 

2, which compares results across three datasets: 

DIV2K Val, OurDatasets, and DIV8K Test. Model-1, 

the baseline without attention mechanisms, serves as 
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the reference, showing solid results with a PSNR of 

20.4977 and SSIM of 0.5831 on DIV2K Val, 19.7949 

PSNR and 0.5929 SSIM on OurDatasets, and 23.3077 

PSNR with 0.6474 SSIM on DIV8K Test. 

Integrating Contrast-Aware Channel 

Attention (CCA) in Model-2 results in modest 

improvements over the baseline. Although the 

increases in PSNR and SSIM are slight, the most 

noticeable change is in the SSIM for the DIV8K Test 

dataset, where the value reaches 0.6478. This 

demonstrates that CCA has a moderate yet consistent 

positive impact on image restoration quality. 

Model-3, which utilizes Enhanced Spatial 

Attention (ESA), shows more substantial performance 

improvements. This model achieves the highest PSNR 

among single-attention models on the DIV2K Val 

dataset (20.6050 PSNR, 0.5848 SSIM), with notable 

improvements in PSNR on OurDatasets (19.8992 

PSNR) and a slight increase in SSIM (0.5948). ESA 

excels in capturing spatial features, improving the 

perceptual accuracy of fine details in the restored 

images. 

The most significant improvements are 

observed in Model-4, which combines both CCA and 

ESA attention mechanisms. This model delivers the 

highest performance across all datasets, with the best 

PSNR (20.6250) and SSIM (0.5863) on DIV2K Val 

and the highest SSIM (0.6489) on DIV8K Test. The 

combination of these attention mechanisms enhances 

both structural similarity and perceptual quality, 

making Model-4 the most effective for image 

restoration across multiple high-resolution datasets. 

The results suggest that combining attention 

mechanisms improves both fine detail restoration and 

overall image quality. 

Table 2. Average PSNR and SSIM results of each model configurations 

No. Model 
Configurations DIV2K Val  OurDatasets DIV8K Test 

Attention Type PSNR SSIM PSNR SSIM PSNR SSIM 

1 None 20,4977 0,5831 19,7949 0,5929 23,3077 0,6474 

2 CCA 20,5702 0,5841 19,8260 0,5920 23,4430 0,6478 

3 ESA 20,6050 0,5848 19,8992 0,5948 23,4484 0,6479 

4 ESA+CCA 20,6250 0,5863 19,8775 0,5945 23,5162 0,6489 

3.   Comparison Results of Model Predictions 

At the time of this study, there were no 

existing models capable of performing 20x super-

resolution on-the-go under bandwidth-constrained 

environments. Therefore, the comparison was 

conducted using a controlled scenario prepared in this 

research, where multiple model configurations (Model 

1 to Model 4) from the proposed RDF Net were 

evaluated to benchmark performance. These 

configurations were tested across multiple datasets, 

focusing on metrics such as Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index Measure 

(SSIM), to assess distortion reduction and structural 

fidelity.  

The performance of the super-resolution 

models is evaluated across multiple datasets, focusing 

on distortion reduction and structural fidelity. Table 3 

provides a quantitative comparison of the models' 

performance in terms of PSNR and SSIM for various 

frames. On the DIV2K Val dataset, Model 1 (the 

baseline) achieves a PSNR of 20.57 and an SSIM of 

0.5815 for the 0834.png frame. Models 2 and 3 show 

slight improvements, with Model 3 reaching a PSNR 

of 20.59 and an SSIM of 0.5829. Model 4, which 

incorporates both Contrast-Aware Channel Attention 

(CCA) and Enhanced Spatial Attention (ESA), 

outperforms all others, achieving a PSNR of 20.63 and 

an SSIM of 0.5830. For the 0900.png frame, Model 4 

again leads with a PSNR of 17.55 and SSIM of 0.5042, 

showing its effectiveness across various frame types. 

 

Table 3. Quantitative Result PSNR and SSIM results of Single Frame 

Frame Metric Model 1 Model 2 Model 3 Model 4 

0834.png PSNR 20.57 20.53 20.59 20.63 

 SSIM 0.5815 0.5813 0.5829 0.5830 

0900.png PSNR 17.45 17.43 17.51 17.55 

 SSIM 0.4962 0.4952 0.5014 0.5042 

Frame_01.png PSNR 17.49 17.48 17.49 17.47 

 SSIM 0.4285 0.4267 0.4289 0.4295 

Frame_60.png PSNR 19.25 19.26 19.28 19.27 

 SSIM 0.5842 0.5823 0.5839 0.5851 

1495.png PSNR 30.40 30.30 30.40 30.43 

 SSIM 0.8495 0.8494 0.8501 0.8499 

1455.png PSNR 23.55 23.68 23.46 23.62 

 SSIM 0.7034 0.7055 0.7033 0.7063 

In OurDatasets, Model 4 continues to show the best performance. For Frame_01.png, it reaches 
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the highest SSIM of 0.4295, while on 

Frame_60.png, it strikes a balance with a PSNR of 

19.27 and an SSIM of 0.5851. These results 

emphasize Model 4's ability to preserve structural 

integrity even in challenging frames with complex 

textures and fine details. On the DIV8K Test 

dataset, Model 4 leads with the best PSNR and 

SSIM for 1495.png, achieving a PSNR of 30.43 and 

SSIM of 0.8499. It also delivers strong performance 

on the 1455.png frame with a PSNR of 23.62 and 

an SSIM of 0.7063, showcasing its ability to reduce 

distortion and preserve fine details. 

Visual evaluations, as shown in Figure 8, 

align with these quantitative results. On the DIV2K 

Val dataset, Model 4 produces outputs closest to the 

ground truth, effectively preserving texture details 

and improving edge clarity. This is especially 

evident in frames like 0834.png and 0900.png, 

where Model 4 manages to reduce noise and 

maintain fine details, outshining the other models. 

In OurDatasets, Model 4’s output for 

Frame_01.png and Frame_60.png preserves 

structural details, such as building edges and 

shadows, more effectively than the other models. 

The DIV8K Test dataset further confirms Model 4's 

superiority in capturing intricate textures and edges, 

as seen in frames like 1495.png and 1455.png, 

where the model minimizes artifacts and aligns 

closely with the ground truth. 

 
Figure 8. Visual comparison of super-resolution 

results across different model configurations on 

selected frames from each dataset, displayed at 10% 

scale. Images (a) 0834.png and (b) 0900.png are from 

the DIV2K Val dataset, (c) Frame_01.png and (d) 

Frame_60.png are from OurDatasets, and (e) 

1495.png and (f) 1455.png are from the DIV8K Test 

dataset. Each model configuration labeled (1)-(4), 

input (In) and the ground truth (GT). 

The overall performance analysis across both 

quantitative metrics and visual outputs consistently 

demonstrates that Model 4 is the top performer. Its 

combination of CCA and ESA attention mechanisms 

gives it a significant advantage in reducing distortion 

while maintaining structural fidelity and clarity. 

Although Model 3 offers a strong alternative for 

scenarios where PSNR is prioritized, Model 4 remains 

the most balanced and adaptable choice for high-

quality super-resolution applications. Models 1 and 2, 

while effective as baselines, do not match the superior 

performance of Model 4, especially in terms of 

structural preservation and fine detail recovery.  

The findings of this study have significant 

practical implications for real-world autonomous 

systems, such as remote sensing operating in 

bandwidth-constrained environments. RDF Net’s 

ability to balance computational efficiency and visual 

fidelity makes it a promising candidate for real-time 

image communication in such applications. 

Despite the absence of prior studies addressing 

20x upscaling for bandwidth-limited environments, 

RDF Net builds upon existing approaches like GANs 

and residual networks by introducing novel attention 

mechanisms and progressive upscaling techniques. 

These innovations position RDF Net as a critical 

advancement in extreme super-resolution, filling a 

significant gap in the current literature while offering 

new opportunities for future exploration. 

 

CONCLUSION 

This study has successfully demonstrated the 

capabilities of the Residual Dense Feature Network 

(RDF Net) for addressing the critical challenge of 

image super-resolution in bandwidth-constrained 

environments, such as LoRa networks. The proposed 

RDF Net achieves an impressive 20x upscaling, 

transforming low-resolution 40x40 pixel images into 

high-quality 800x800 pixel outputs. Through the 

integration of advanced attention mechanisms, namely 

Contrast-Aware Channel Attention (CCA) and 

Enhanced Spatial Attention (ESA), the model achieves 

state-of-the-art results in both perceptual quality and 

structural fidelity across diverse datasets. 

The research highlights two key 

contributions. Model-4, which integrates Contrast-

Aware Channel Attention (CCA) and Enhanced Spatial 

Attention (ESA), achieves superior image restoration 

with the highest PSNR of 20.6250 and SSIM of 0.5863 

on the DIV2K validation dataset and the best SSIM of 

0.6489 on the DIV8K test dataset, making it optimal 

for scenarios demanding high precision. Meanwhile, 

Model-3, utilizing only ESA, offers a resource-

efficient alternative with competitive performance, 

achieving a PSNR of 20.6050 and SSIM of 0.5848 on 

DIV2K and a PSNR of 19.8992 and SSIM of 0.5948 

on OurDatasets, demonstrating its suitability for 

constrained resource environments while maintaining 

robust image quality. 

These findings directly address the problem of 

balancing image quality and transmission efficiency 

over LoRa networks, demonstrating RDF Net’s 

potential in enhancing autonomous system 

applications. Despite these advancements, challenges 
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persist in real-time image transmission over LoRa, 

where broadcasting a single 40x40 image still requires 

approximately 0.208–0.56 seconds at a data rate of 50 

kbps. This delay underscores the need for further 

optimization of RDF Net, exploration of alternative 

compression methods, and testing on real-world LoRa 

environments. 
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